A novel second order accurate hybrid numerical approach for conservation laws
نویسندگان
چکیده
منابع مشابه
A Second Order Accurate Method in Simulation of Underwater Explosion
In this paper, a numerical scheme is proposed for the multi-fluid compressible flows. This method is applied to the problem of underwater explosion. The proposed scheme is basically the extension of Godunov method in gas dynamic problems to the multifluid environments and is second-order accurate in space. In this method, also, the problem of artificial mixing of two different phases on Euleria...
متن کاملA Second Order Accurate Method in Simulation of Underwater Explosion
In this paper, a numerical scheme is proposed for the multi-fluid compressible flows. This method is applied to the problem of underwater explosion. The proposed scheme is basically the extension of Godunov method in gas dynamic problems to the multifluid environments and is second-order accurate in space. In this method, also, the problem of artificial mixing of two different phases on Euleria...
متن کاملA numerical method for fractal conservation laws
We consider a fractal scalar conservation law, that is to say, a conservation law modified by a fractional power of the Laplace operator, and we propose a numerical method to approximate its solutions. We make a theoretical study of the method, proving in the case of an initial data belonging to L∞ ∩ BV that the approximate solutions converge in L∞ weak-∗ and in Lp strong for p < ∞, and we give...
متن کاملA Numerical Method for Fractal Conservation Laws
We consider a fractal scalar conservation law, that is to say, a conservation law modified by a fractional power of the Laplace operator, and we propose a numerical method to approximate its solutions. We make a theoretical study of the method, proving in the case of an initial data belonging to L∞ ∩ BV that the approximate solutions converge in L∞ weak-∗ and in Lp strong for p < ∞, and we give...
متن کاملLocal Conservation Laws of Second-Order Evolution Equations
Generalizing results by Bryant and Griffiths [Duke Math. J., 1995, V.78, 531–676], we completely describe local conservation laws of second-order (1 + 1)-dimensional evolution equations up to contact equivalence. The possible dimensions of spaces of conservation laws prove to be 0, 1, 2 and infinity. The canonical forms of equations with respect to contact equivalence are found for all nonzero ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Proceedings
سال: 2008
ISSN: 1270-900X
DOI: 10.1051/proc:082507